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" The action of resonance IR laser radiation on a molecular gas leads, at high~-power absorption
intensity, to a breakdown in the equilibrium (Boltzmann) energy distribution in the internal
degrees of freedom [1]. Under realistic conditions, molecular gases usually are (due to
small amounts of impurities or isotopic components) multicomponent systems. In this case
resonance IR laser radiation (or other methods of selective action), disturbing the distribu-
tion function of the primary gas, does not interact directly with impurities. The problem
thus arises of determining the distribution. function of the impurity gas interacting with the
nonequilibrium (non-Boltzmann) thermostat, The present paper, devoted to the solution of
this problem, treats the distribution function of harmonic oscillators A, consisting of a small
amount, of impurities in a system of harmonic oscillators B with given nonequilibrium dis-
tribution functions of vibrational energy. The behavior of a system in a nonequilibrium thermo-
stat was first congidered in [2, 3] where, as well as in {4, 5], it was shown that in a non-Max-
wellian thermostat with a small amount of harmonic oscillator impurities, a Boltzmann dis-
tribution in harmonic oscillator vibrational energies is established under stationary condi-
tions, with a temperature differing from the gas-kinetic temperature of the thermostat, de-
fined in terms of the mean-square velocity. The behavior of a small amount of impurities
(heavy monoatomic particles and harmonic oscillators) in a non-Maxwellian thermostat of
a light gas was further investigated in [6-8]. Unlike the papers mentioned, the present one
considers the behavior of a small amount of harmonic oscillator impurities in a thermostat
with a Maxwellian velocity distribution and with a nonequilibrium (non-Boltzmann) distribu-
tion in vibrational energies.

1. Basic Equations, Stationary Solution. The kinetic equations describing the process of vibrational
relaxation of a small amount of diatomic molecule impurities A in a thermostat of diatomic molecules B
are [1]
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where x, is the number of molecules A at the n~th vibrational level per unit volume (Za:n=N A) and yp, is the
n=0

number of molecules B at the n-th vibrational level (2 yn=NB) . The functions y, are assumed known, Zpp
n=0

is the number of collisions of one A molecule with B molecules per unit time for Ng=1, and Qf}fn is the vi-
brational exchange probability for one collision of A and B molecules, as a resuilt of which the A and B mole-
cules pass from states m and s into states n and [, respectively.

Only collisions of A and B molecules are taken into account in Eq. (1.1), while collisions of A molecules
with each other are neglected.

Assuming that in collisions of A and B molecules q B quanta are converted into p A quanta, for the har-
monic oscillator model, system (1.1) decomposes into a system of p uncoupled equations
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In deriving (1.2) from (1.1), it was assumed that
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where § (y) and ¥, (x) are wave functions of harmonic oscillators B and A in states s and n, respectively.

Substituting in (1.3) the well-known values of the matrix elements [9], we obtain
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The decoupling of system (1.1) and its trangformation to the system of p independent equations (1.2) for
multiquantum (p-quantum) transitions correspond to the physically obvious circumstance that p-quantum transi-
tions do not mix the states m and n, whose difference | m—n| is not a multiple of p. Multiquantum transitions
by p quanta occur between levels m and n satisfying the condition | ni—nl =p, i.e., they couple states with sub-
scripts r+lp, where r is fixed (r=0, 1, 2, ..., p—1), and 1 =0, 1, 2,

The system of equations (1.2) has an interesting feature consisting in the fact that under stationary con-
ditions its solutions are the Boltzmann distribution functions
_
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with a temperature determined by the relation

h“')A QpO
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where wA is the frequency of oscillator A,

The normalization constants C, are determined from the conservation conditions of the number of par-
ticles

lgo Trtip = lgoxr+lp (0).

Forp=1 (smgle—quantum transitions in component A) the natural normalization coefficient is Cy=Na[1—exp
(—hw A/kT )]. Besides, for p=1 system (1.2) possesses the property of canonical invariance, i.e., in the re-
laxation process it retains the Boltzmann shape of the distribution function [1]. I in Eq. (1.1) one takes into
account single-quantum exchange of vibrational energy in collisions of A molecules with each other, this leads
to all C,. being equal to each other.

Thus, in a harmonic oscillator system being a small impurity in a non-Boltzmann thermostat of har-
monic oscillators of a different kind, a Boltzmann distribution is established for all levels (in case of single-
quantum transitions p =1).or for a group of levels (in case of multiquantum transitions p = 1) with a vibrational
temperature Te, determined by relation (1.7),

In the case of a Maxwellian velocity distribution, the energy exchange probabilities are related by the

principle of detailed balance:
qh“’B ho 4
~w%T P
Qe =Qbe ", (1.8)

where T is the temperature of the translational degrees of freedom (the gas temperature) and wg is the fre-
quency of a B oscillator.

Taking into account (1.8), relation (1.7) acquires the form
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where the effective vibrational temperature T‘]? * is determined as follows:
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For a Boltzmann thermostat with vibrational temperature T‘]?(yn =Y, exp(—slg/ kT‘],?')), the following ob-
vious equality is satisfied

B*
17 =1

and Eq. (1.9) reduces to the well-known Treanor relation [1], relating T{,\, T‘]}, and T, Thus, equality (1.9) can
be considered as a generalization of the Treanor relation to the case of a non-Boltzmann thermostat,

For nearly resonance vibrational exchange -
4 ghop = (1 + 7) phoa, |v]<1 (1.11)
relation (1.9) can be written in the form '
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A peculiar feature of (1.12) is that for ¥ > 0 and T§*~ T/v the vibrational temperaﬁxre of a small im~
purity increases without bound. In reality this effect is restricted by vibrational—translational energy ex-
change and by molecular anharmonicity.

The existence of a Boltzmann distribution of a small impurity in a nonequilibrium thermostat makes it
possible fo determine experimentally the characteristics of a nonequilibrium thermostat by measuring only
the impurity vibrational temperature.

2. Effective Vibrational Temperature of a Non-Boltzmann Thermostat. As seen from relation (1.10),
the effective vibrational temperature of a nonequilibrium thermostat depends not only on the nonequilibrium
distribution function of the thermostat, but also on the specific shape of the resonance energy exchange, as
determined from (1.11). For q=1 the temperature T\],3* is determined by the average supply of vibrational
guanta per molecule by the equation

1
where o= — Etny.
NBn:O "

For g> 1 the t*emperature T‘],g* is no longer expressed in terms of ¢, which makes it possible, in prin-
ciple, to change T‘l}?’ without essentially changing the average vibrational energy.

We investigate now how the specific shape of the nonequilibrium distribution over vibrational levels in
the thermostat y, affects the temperature T‘],3* . The temperature T‘],3* is determined by relation (1.10), having
two peculiar features. First, the thermostat molecules in the first q levels do not participate in the activa-
tion of A molecules, since their energy-is-insufficient. These molecules, however, do participate in the de-
activation process of A molecules (formally, this is expressed by the fact that the summation in Eqgs. (1.5),
{1.6), and consequently (1.10), starts with different values of vibrational levels).

The second important feature of (1.10) (see also Eq. (1.8)) is that the exchange probability Qf&sinq de-
fined by (1.4) increases with s approximately as s, which enhances the active role of vibrationally excited
molecules of the thermostat having a large reserve of vibrational energy in thermal exchange with the system
under investigation. These two features cause two opposite effects: lowering and enhancement of T‘],g‘* with
respect to the kinetic vibrational temperature of the nonequilibrium thermostat Tx]?, defined by the relation

hopg
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for a gradual enhancement of the average vibrational energy reserve of the thermostat o,
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We illustrate this discussion on examples, We assume that there exists a Boltzmann distribution in the
nonequilibrium thermostat, enriched by a small amount of vibrationally excited molecules:

Yo = 11—z (1 — e_(T) e—ﬂn + Z8nny’ (2.2)
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where a0=(e‘9 ~1)"1, and the summation in (1.10) for yn of form (2.2) is carried out by means of the obvious
relation
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where 2 z"+i = z0—— . If one chooses x and n, in the manner
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TB* is completely determined by the small impurity of vibrationally excited molecules
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and 5‘1,3 differs little from the vibrational temperature of the unperturbed thermostat T‘1,3, while T‘]?* can ex-
ceed T]‘? significantly.

. Consider now an example in which the second case is realized, lowering of T‘],?‘* with respect to -T"],a dur-
ing heating of the thermostat.

In equilibrium let almost all molecules be at the zeroth level, i.e., @ <1, If we now transform them to
level q—1, the energy flow from system A to the thermostat B is enhanced, since the transition probabilities
increase with the level subscript. In this case, however, the opposite energy flow from the thermostat B into
system A does not change, since there is no change in the population of levels participating in energy transfer
by system A, Thig leads to lowering of T‘]?* , though the reserve of quanta and consequently the kinetic vibra-

tional temperature T‘],3 increase.

We estimate this effect. Under equilibrium conditions

Ty =15,

h 1

where ¢ k‘;‘; =In (—-%:L)q~, After transforming the molecules of B from the zeroth level to level gq—1, the
v 0 *

effective temperature T‘]? is approximately determined by the equation
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Th¢ kinetic vibrational temperature E“]f)’ after molecular excitation to level gq—1 is determined by relation (2.1)
with @ =q—1, i.e.,
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where

ﬁ__ln ) >>1_
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Numerical estimates for oy~ 107}, T‘l?* 420, and g =3 give T?—T‘?* ~90K, T‘],S/T‘],3 ~ 6. Thus, the signif-
icant increase in the average vibrational energy (o/ 04~ 20) is accompanied in the given case by a decrease
in TB*,

\

‘The nonequilibrium distributions considered so far are mostly of an illustrative nature, since they can~
not be easily realized in the stationary regime. Realistic distributions formed under the action of elec-
tron and laser pumping have more complicated shapes. It can be assumed, however, that in the simplest case
of sufficiently intense laser pumping, occurring by the scheme of successive single-step excitations 0—~1—
2— ...~ I, the first I +1 levels are almost identically populated, with exponential decay at the higher levels,
starting with level I [1]. In this connection, we consider a distribution of the form

_ {A’ n<1, (2.3)
I =\ aexpll— 0 (n — DI, n>1
A 1 —exp(—9)

=1 ~+.[{ —exp (— 8)] l.

At sufficiently low temperatures (4> 1) the exponential tail in the distribution (2.3) can be neglected, In-
this approximation the distribution (2.3) corresponds to the kinetic vibrational temperature

5= ""“’_kB [m A+ 13)]“. (2.4

Expression (2.4) is obtained from (2.1) by substituting o = 1/2,

According to (1.10) the effective vibrational temperature of the thermostat equals

1
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Direct comparison of (2.4) and (2.5) shows that for =2 and 3
78" < 75 \ (2.6)

Obviously, (2.6) is valid at any q (q =) for distributions differing little from (2.3), i.e., for distributions formed
by laser or electron pumping.

A noticeable deviation from T‘],3* to 5‘],3 can be expected for distributions of type (2.2), which are char-
acteristic of systems with vibrationally excited molecular sources [1].

Analysis of the stationary states in a system of harmonic oscillators placed in a non-Boltzmann thermo-
stat of harmonic oscillators of a different kind leads to the following basic results:

1. A Boltzmann distribution with temperature T{}, determined by relation (1.11), is established in the
harmonic oscillator system. This is a generalization of the well-known Treanor relation to the case of a non-
equilibrium thermostat.

2. The temperature Té‘ depends on integral characteristics of the thermostat T‘}?*, called the effective
vibrational temperature of the thermostat, The latter differs from the kinetic vibrational temperature of the
thermostat Ty which is determined in terms of the average reserve of thermostat vibrational energy,

3. The temperature T‘]?* is sensitively dependent on the nature of the vibrational energy distribution in
the thermostat and on the method of vibrational energy exchange between the thermostat molecules, and can
differ appreciably from the kinetic temperature T‘I} This opens up the possibility of significantly changing T{}
by a small perturbation of the distribution function of the thermostat vibrational energy, which enables one,
e.g., to control chemical or other processes in the system.
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